Complex number 3

- **1.** Given that $z + \frac{1}{z} = 1$, find the values of (a) $z^4 + \frac{1}{z^4}$ (b) $z^5 + \frac{1}{z^5}$.
- **2.** (a) Using deMoivre's Theorem to show that $\sin 5\theta = a \sin^5 \theta + b \cos^2 \theta \sin^3 \theta + \cos^4 \theta \sin \theta$, where a, b and c are integers to be determined.
 - **(b)** Express $\frac{\sin 5\theta}{\sin \theta}$ in terms of $\cos \theta$, where θ is not a multiple of π . Hence, find the roots of the equation $16x^4 - 12x^2 + 1 = 0$ in trigonometric form.
- **3.** (a) Find the roots of $z^5 = 1$.

(b) Show that one of the roots in **(a)** is $\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} = \frac{\sqrt{5}-1}{4} + i \frac{\sqrt{10+2\sqrt{5}}}{4}$

- (c) Show that (i) $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$, (ii) $|1 + \omega^2 + \omega^4| = \sqrt{\frac{3-\sqrt{5}}{2}}$.
- **4.** Show that $-\sqrt{2} + i\sqrt{2}$ is a root if $x^4 + 16 = 0$. The root $-\sqrt{2} + i\sqrt{2}$ is located on a circle of radius 2 in an Argand diagram and plot all the roots.
- 5. Solve the equation $5z^4 z^3 + 4z^2 z + 5 = 0$.
- **6.** ABCD is a square with the letters in the anticlockwise order. The points A and B represents 2 + 3i and 6 + i respectively. Find the complex number represented by C and D.
- 7. The equation $z^4 2z^3 + kz^2 18z + 45 = 0$ has imaginary roots. Obtain all the roots of the equation and the value of the real constant k.
- 8. (a) Let z = -2 3i, find z^2 . (b) Hence solve the equations : (i) $w^2 + 4w = -9 + 12i$ (ii) $w^4 + 4w^2 = -9 + 12i$.

9. If $z = \cos \theta + i \sin \theta$, show that $\frac{1}{1+z^2} = \frac{1}{2}(1 - i \tan \theta)$ and write $\frac{1}{1-z^2}$ in similar form.

- **10.** (a) Let z = 1 + i, find $z^n, n = 1, 2, 3, 4, ...$ in Cartesian form.
 - **(b)** Find z^n in polar form.
 - (c) Explain, without plotting, how you can represent z^n in Argand diagram.